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ABSTRACT

Background: Traditional Chinese medicine (TCM) prescriptions have multiple bioactive proper-
ties. “Gui Zhi-Shao Yao” herb pair is widely used to treat chronic pain (CP), as well as anxiety
and depression. However, its related targets and underlying mechanisms have not
been deciphered.

Methods: In this study, the network pharmacology method was used to explore the bioactive
components and targets of “Gui Zhi-Shao Yao” herb pair and further elucidate its potential bio-
logical mechanisms of action in the treatment of CP with comorbid anxiety disorder (AD) and
mental depression (MD).

Results: Following a series of analyses, we identified 15 active compounds, hitting 130 potential
targets. After the intersections the targets of this herb pair and CP, AD and MD - sorted by the
value of degree — nine targets were identified as the vital ones: Akt1, IL6, TNF, PTGS2, JUN,
CASP3, MAPKS8, PPARy and NOS3. Gene ontology (GO) and Kyoto Encyclopedia of Genes and
Genomes (KEGG) analysis results demonstrated 11 pathways, such as AGE-RAGE signalling path-
way, IL-17 signalling pathway, TNF signalling pathway, which primarily participate in the patho-
logical processes.

Conclusions: This study preliminarily predicted and verified the pharmacological and molecular
mechanisms of “Gui Zhi-Shao Yao” herb pair for treating CP with comorbid AD and MD from a
holistic perspective. In vivo and in vitro experiments will be required to further investigate
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the mechanisms.

KEY MESSAGE

e A network pharmacology approach was applied to identify key targets and molecu-

lar mechanisms.

e Nine targets were regarded as the vital targets for chronic pain with comorbid anxiety

and depression.

e Predicted 11 pathways were the potential therapy targets and pharmacological mechanism

of “Gui Zhi-Shao Yao” herb pair.

Introduction

Recently, the International Association for the Study of
Pain (IASP) has revised the definition of pain to “an
unpleasant sensory and emotional experience associ-
ated with, or resembling that associated with actual or
potential tissue damage” [1]. Among various forms of
pain, chronic pain (CP) accounts for 18% of total
instances of pain in developing countries [2]. CP has
become a global health problem, which may lead to

the severe disability, with social and economic implica-
tions in the community. Negative emotions, such as
anxiety and depression, are highly prevalent in
patients suffering from CP [3]. The synchrony of
change exists between depressive/anxiety symptoms
and CP [4]. Hitherto, non-steroidal anti-inflammatory
drugs (NSAIDs) — such as diclofenac, ketoprofen and
naproxen - have been the first choice to treat CP as
well as depression and anxiety [5]. However, the use
of NSAIDs is accompanied by numerous side effects,
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such as gastrointestinal bleeding and ulceration, prur-
itus, dizziness and dysphoria [6,7]. Thus, an alternative
therapy with equivalent effectiveness but fewer side
effects is desperately needed for treating this
comorbidity.

Traditional Chinese medicine (TCM) is a treasure of
China and has formed a unique and complete theoret-
ical system different from Western medicine [8].
Chinese herbs have widely been applied to treat dis-
eases with precise efficacy, relatively low toxicity and
low-cost [9]. Ramulus Cinnamomi (Gui Zhi in
Chinese)-Paeonia lactiflora (Shao Yao in Chinese) is a
classic traditional Chinese herb pair, which can recon-
cile the camp and guard, clear heat and relieve pain,
and warm meridians and dredge collaterals [10].
According to the theory of TCM, Gui Zhi belongs to
yang, which can help the Wei Qi to resist external evil,
warm the meridians and dredge collaterals to relieve
pain; Shao Yao belongs to yin, which can nourish Ying
Qi, clear heat and alleviate pain as well. Therefore, in
TCM theory, this herb pair, the “Gui Zhi-Shao Yao”
herb pair can also relieve hepatic stagnation without
harming yin, which is beneficial to treat depressive/
anxiety symptoms. However, the related mechanisms
have not been completely elucidated.

With the development of system biology, bioinfor-
matics and high-throughput histology, the network
pharmacology technology, which integrates pharma-
cology and information network, has attracted much
more attentions. The major features of TCM (a holistic
view, and treatment based on TCM syndrome differen-
tiation) and the characteristics of Chinese herb pair
(multitarget, multichannel and multilink) are consistent
with the main view of the emerging concept of net-
work pharmacology [8,11,12]. Thus, we selected the
network pharmacology approach to explore the
impact of the “Gui Zhi-Shao Yao” herb pair on CP
with comorbid anxiety and depression, and then to
clarify the underlying mechanisms.

Materials and methods

Chemical compounds for “Gui Zhi-Shao Yao”
herb pair

The chemical compounds of each herb in this herb
pair were obtained from (1) Traditional Chinese
Medicine Systems Pharmacology Database and
Analysis Platform [13] (TCMSP, https://tcmspw.com/
tcmsp.php, version 2.3) with screening conditions of
oral bioavailability (OB) >30%, drug-likeness (DL)
>0.18 and half-life (HL) >4 h, as described before [14];
and from (2) Traditional Chinese Medicines Integrated

Database [15] (TCMID, http://www.megabionet.org/
tcmid/) through SwissADME [16] (http://www.swis-
sadme.ch/). After deleting the duplicate data, there
were 26 herbal compounds of Gui Zhi and 22 herbal
compounds of Shao Yao (Table S1).

Compound targets of “Gui Zhi-Shao Yao”
herb pair

We input all the active ingredients into PubChem
(https://pubchem.ncbi.nlm.nih.gov/) [17] - the world’s
largest collection of freely accessible chemical informa-
tion — to obtain the 2 Structure or Canonical SMILES
of these ingredients. Afterward, these data were
imported into Swiss Target Prediction (http://www.
swisstargetprediction.ch/) [18] and TCMSP database to
predict the potential targets genes with the species
limited as “Homo sapiens”. We took the intersections
of the above two difference analyses, yielding a total
of 130 targets genes. Then, the National Centre for
Biotechnology Information’s (NCBI) Gene database
(www.ncbi.nlm.nih.gov/gene) [19] was used to stand-
ardize gene names and organisms under the condition
of “Homo sapiens” (Table S2).

Targets of CP, anxiety and depression

The gene targets associated with diseases were col-
lected from DisGeNET (https://www.disgenet.org/, ver-
sion 7.0) [20], a discovery platform containing one of
the largest publicly available collections of genes and
variants associated with human diseases, and
GeneCards (https://www.genecards.org/, version 5.0)
[21], a searchable, integrative database providing com-
prehensive, user-friendly information on all annotated
and predicted human genes. We screened these two
platforms using the keyword “chronic pain”, “anxiety
disorder (AD)” and “mental depression (MD)”, then
took the part that is higher than the average of the
score, and deleted the duplicate results. Eventually, we
gathered 2941, 2662 and 2405 targets related to CP,
AD and MD, respectively.

Protein—-protein interaction (PPI)

We utilized an online tool, jvenn (http://jvenn.tou-
louse.inra.fr/app/example.html) [22], to take the inter-
sections between the targets of “Gui Zhi-Shao Yao”
herb pair and diseases. Afterward, candidate targets
were imported into the STRING (https://string-db.org/,
version 11.0) [23] - a database of known and pre-
dicted PPls. We selected “Homo sapiens” and a
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medium confidence score with correlation degree
>0.400 as the cut-off value. PowerPoint (Microsoft
Office 2019, Redmond, WA) was utilized to render
the results.

Gene ontology (GO) and Kyoto Encyclopedia of
Genes and Genomes (KEGG) enrichment analysis

The Metascape (https://metascape.org/) [24] was used
to conduct the GO and KEGG enrichment analysis (p
value cut-off, .01). The bar chart of GO enrichment
analysis and bubble chart of KEGG pathway chart
were visualized by http://www.bioinformatics.com.cn,
an online platform for data analysis and visualization.

Network construction

Network construction was performed using the net-
work visualization software Cytoscape (version 3.7.2)
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as follows: (1) compound-compound target network,
which connects the chemical compounds of this herb
pair and the related targets; (2) “Gui Zhi-Shao Yao”
herb pair-diseases PPl network obtained from the
STRING; (3) targets—disease-KEGG pathway network.

Results
Compound-compound target network analysis

A total of 130 predicted targets were identified from
15 candidate compounds of the “Gui Zhi-Shao Yao”
herb pair (Figure 1); the other candidate compounds
did not have corresponding targets. Many targets
were hit by multiple compounds. For instance, PTGST,
PTGS2 and PIK3CG were modulated by multiple ingre-
dients including (-)-taxifolin, beta-sitosterol, taxifolin
and kaempferol. Other targets, such as PGR or NCOA2,
also matched more than one ingredient. These data

SY2

LRI il
(i /il
GSTML MP ¢ POLB ICAMT —CHR
MGORZ PSMDASSR NR112 GSKAB
/~\
‘ g RM3  CA?  HAS?

CYP1A2 PON1

Figure 1. Compound-compound target network (diamonds represent compound targets, cycles represent the herbs, hexagons
represent the compounds, triangles represent the duplicate compound of these two herbs). GZ1: (-)-taxifolin; GZ2: taxifolin; GZ3:
peroxyergosterol; GZ4: 3,4-dihydroxy benzoic acid; GZ5: cinnamaldehyde; GZ6: coumarinic acid; GZ7: trans-cinnamic acid; SY1:

paeoniflorigenone;  SY2:

(3S,5R,8R,9R,10S,14S)-3,17-dihydroxy-4,4,8,10,14-pentamethyl-2,3,5,6,7,9-hexahydro-1H-cyclopenta[a] phe-

nanthrene-15,16-dione; SY3: paeoniflorin; SY4: mairin; SY5, kaempferol; SY6: phenol; A1: beta-sitosterol; A2: sitosterol; GZ: Gui Zhi;

SY: Shao Yao.
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Figure 2. Venn of intersections and PPl network of herb pair and diseases. CP: chronic pain; AD: anxiety disorder; MD: men-

tal depression.

suggested that “Gui Zhi-Shao Yao” herb pair has the
multi-component, multi-target and multi-disease treat-
ment characteristics.

Herb pair-diseases PPl network analysis

The Venn diagram of the common targets between
“Gui Zhi-Shao Yao” herb pair and disease and the
PPl network of these common targets are shown in
Figure 2. The disease-targets and the “Gui Zhi-Shao
Yao” herb pair-targets were intersected. The 93, 73
and 59 common targets were found between herb
pair-targets and the targets of CP, AD and MD,
respectively. According to the PPl network, the top 10
highest degree targets in each intersection were
selected. There were nine targets that were identical
in these targets, and were regarded as key targets
that play an important part in the underlying mecha-
nisms of “Gui Zhi-Shao Yao” herb pair: Akt1, IL6, TNF,
PTGS2, JUN, CASP3, MAPK8, PPARy and NOS3. The
details are displayed in Table S3.

GO and KEGG enrichment analysis

The GO and KEGG enrichment analysis was conducted
to systematically discern the multiple therapeutic
mechanisms of “Gui Zhi-Shao Yao” herb pair for CP
with comorbid AD and MD. Sorted based on the value

of “Enrichment”, we selected the top 10 of biological
processes (BP), cellular components (CC) and molecu-
lar functions (MF), separately, as the pivotal results of
GO enrichment (as shown in Figure 3). In terms of CP,
the BP results suggested that these targets provided
responses to small molecule metabolic process, neuro-
transmitter (acetylcholine, norepinephrine-epinephr-
ine) and synaptic transmission (GABAergic); the CC
results suggested that these targets mainly localized
at neuronal synapses; the MF results suggested that
these targets were mostly involved in receptor activity
and enzyme activity (Table S4). In terms of AD, the BP
results suggested that these targets were related to
neurotransmitter (acetylcholine, norepinephrine-epi-
nephrine) and synaptic transmission (GABAergic), mol-
ecule biosynthetic and metabolic process, and
macrophage differentiation; the CC results suggested
that these targets mainly localized at neuronal mem-
brane; the MF results suggested that these targets
were also mostly involved in regulation of receptor
activity, enzyme activity, ion channel activity (Table
S5). In terms of MD, the BP results suggested that
these targets were related to synaptic transmission
(GABAergic and dopaminergic), chemokine biosyn-
thetic process, lipid storage, etc. the CC results sug-
gested that these targets mainly localized at neuronal
membrane; the MF results suggested that these tar-
gets were similar mostly involved in regulation of
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Figure 3. Results of GO enrichment for (a) “Gui Zhi-Shao Yao”
herb pair and CP, (b) “Gui Zhi-Shao Yao” herb pair and (c)
“Gui Zhi-Shao Yao” herb pair and MD. BP: biological proc-
esses; CC: cellular components; MF: molecular functions.

receptor activity, enzyme activity and ion channel
activity (Table S6).

As displayed in Figure 4, 11 common KEGG path-
ways have been screened, also sorted by the
“Enrichment”. The vital underlying pathways that exist
repeatedly in three KEGG analysis results are: apop-
tosis — multiple species, AGE-RAGE signalling pathway
in diabetic complications, IL-17 signalling pathway,
TNF signalling pathway, nicotine addiction, fluid shear
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stress and atherosclerosis, C-type lectin receptor (CLR)
signalling pathway, cocaine addiction, insulin resist-
ance, inflammatory bowel disease (IBD) and regulation
of lipolysis in adipocytes, which can be summed up as
three aspects: inflammatory response, immune regula-
tion and regulation of neurotransmission. Meanwhile,
the targets-disease-KEGG pathway network was con-
structed to visualize these results (Figure 5).

Discussion

In this study, we predicted the active ingredients and
potential targets of Gui Zhi-Shao Yao herb pair related
to CP through the network pharmacology approach
and we found that the potential mechanism of Gui
Zhi-Shao Yao herb pair for treating CP was predomin-
antly related to inflammatory response, immune regu-
lation and regulation of neurotransmission. Mutual
influence exists between CP and AD/MD [25,26]. They
would exert long-term negative effects on pain ratings
even after relief of AD or MD [4]. With chronic and
persistent pain, systemic inflammation has been
observed in individuals with AD/MD [27,28], which
may further aggravate the conditions. Thus, CP is a
multidimensional disease, mainly including sensory
and affective dimension. In recent years, studies have
shown a significant overlap in the neurobiological
mechanisms between CP and AD/MD [25,26].
Clinically, CP can induce AD and MD, and the comor-
bid condition of CP associated with AD/MD usually
occurs. However, persistent and even severe AD/MD
may conversely affect the recovery from CP [29,30].
During the COVID-19 pandemic, the mutual influence
was also observed [31]. There are extensive overlap-
ping brain regions involved in CP, AD and MD, includ-
ing hippocampus, prefrontal cortex (PFC), insular
cortex, anterior cingulate, thalamus and amygdala
[26]. For example, the theta-frequency power in the
medial PFC and theta-frequency synchronization
between the medial PFC and ventral hippocampus
were significantly greater increased when CP rat was
displaying elevated anxiety-like behaviours [32].
Furthermore, non-invasive, repetitive direct anodal cur-
rent transcranial stimulation of the PFC could reverse
established allodynia and suppressed aversion and
anxiety-related behaviours of CP  mice [33].
Accumulating evidence suggests that the excess of
inflammatory response in the hippocampus involved
in the progression of both posttraumatic stress dis-
order and CP [34]. “Gui Zhi-Shao Yao” herb pair has
been used to reduce CP and relieve AD/MD simultan-
eously for a long time. Herein, under the theoretical
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Figure 4. The 11 common pathways in three KEGG analysis results. CP: chronic pain; AD: anxiety disorder; MD: men-

tal depression.

guidance of TCM, we utilized the network pharmacol-
ogy approach to explore the underlying targets and
potential mechanisms of “Gui Zhi-Shao Yao” herb pair
to treat CP with comorbid AD and MD.

After the analyses, nine targets were identified as
critical ones involved in the therapeutic effects of “Gui
Zhi-Shao Yao” herb pair on CP with comorbid AD and
MD. Akt1, an important downstream substrate in the
phosphatidylinositol ~ 3-kinase (PI3K) pathway, is
involved in nociceptive information processing, anxiety
and depression-like behaviours. For example, intra-
thecal injection of Akt inhibitor MK-2206 or PI3K
inhibitor LY294002 significantly attenuated mechanical
allodynia and thermal hyperalgesia induced by pacli-
taxel [35]. AKT1 affects anxiety-like behaviour in a sex-
specific fashion, which the male Akt KO mice
increased anxiety-like behaviour [36]. The activation of
the PIK3CA-AKT1 signalling pathway exerted anti-
depressant-like effects in the olfactory bulbectomized
rat model of depression [37]. IL-6, a proinflammatory
cytokine, has various effects on the nervous system,
involving neuroprotection, nerve regeneration and
enhancement of nociception [38]. IL-6 can induce the

dorsal root ganglion nociceptor excitability and inter-
act with IL-6R to stimulate inflammatory processes
[39]. IL-6 is also strongly and consistently associated
with depression and anxiety [40]. A recent study has
regarded serum IL-6 as a potential predictor of the
antidepressant effects of ketamine [41]. TNF is also a
proinflammatory cytokine involved in several cellular
responses, such as apoptosis and proliferation;
recently, it has been regarded as a target for neuro-
pathic pain [42,43]. TNF in brain has been a specific
target to alleviate thermal hyperalgesia and positively
influence the affective component of pain [44].
However, during animal experiments, Del Rivero et al.
[45] found that only male mice responded to such a
method of analgesia. There are significant changes in
the levels of TNF in cells, plasma and serum in
patients with AD/MD [46], which is consistent with
abundant evidence that supports the role of inflam-
mation in the development of psychological distress
[47,48]. PTGS2, also named COX-2, a proinflammatory
mediator, has been demonstrated to induce hypersen-
sitization of pain transmitting neurons [49]. COX-2 is
one of the two main isoforms of COX enzymes, which
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complications

Figure 5. Targets—disease—-KEGG pathway network (diamonds represent three diseases, cycles represent the targets, hexagons rep-
resent the pathways). CP: chronic pain; AD: anxiety disorder; MD: mental disorder.

play a key role in the mechanism of action of NSAIDs
[50]. The inhibition of COX-2 can significantly alleviate
chronic mechanical allodynia [51,52]. The COX2 highly
selective inhibitor lumiracoxib can prevent acute
stress-induced increase in BLA cellular activity and
anxiety-like behaviour in mice and reverse chronic
CORT-induced increases in amygdala glutamatergic
signalling and anxiety-like behaviours in rats [53,54]. In
MD, the expression of COX2 was increased in the hip-
pocampal dentate gyrus in depressed rats, and COX-2
inhibition by celecoxib significantly ameliorates
depressive behaviours [55]. As one of substrates of c-
Jun N-terminal kinase (JNK), JUN is an important
nuclear transcription factor [56]. MAPK8 is known as
JNK1. JNK1/c-Jun signalling is important in the patho-
genesis of CP [57,58]. JNK also plays an important role
in the development of depression via several physio-
logical processes, such as inflammation, oxidative
stress, cell death and neurogenesis [59]. For example,
intracerebral ventricular infusion with a JNK inhibitor
DJINKI-1 in mice can promote adult hippocampal

neurogenesis in the hippocampus to alleviate anxiety
[60]. Moreover, treatment with JNK inhibitor SP600125
can decrease the neuroinflammation response in the
habenula, amygdala and medial PFC to alleviate
depressive-like behaviours in rats [61]. Casp3, an
effector caspase of apoptosis in the anterior cingulate
cortex [62], can be downregulated by nerve injury.
Conversely, overexpression of Casp3 reduces periph-
eral hypersensitivity [63]. Meanwhile, the overexpres-
sion of Casp3 in the hippocampus is an important
step in the pathogenesis of depression [64]. There is
evidence to support that electroacupuncture interven-
tion could reduce the expression of caspase-3 in cor-
tex and improve depressive symptoms as well [65]. It
has also been scanned as one potential target of the
herb pair of prepared Rehmannia root-Chinese arborvi-
tae kernel for ADs [66]. PPARy expresses primarily in
neurons and some studies have shown that PPARy
activation is implicated in a decrease of specific types
of neuropathic and inflammatory pain [67,68]. PPARy
agonist pioglitazone can dose-dependently inhibit the
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spinal glial and stimulus-evoked p-ERK activation and
block the development of and reduce established
neuropathic pain in rats [69]. Long-term treatment
with PPARy agonist can relieve anxiety- and depres-
sion-like symptoms through decreasing the expression
of inflammatory gene programs [70]. Another study
also pointed that the antidepressant- and anxiolytic-
like effects produced by activation of PPARy may be
via an adiponectin-dependent mechanism [71]. NOS3,
one of the three components of nitric oxide (NO), is
involved in regulating several cellular processes, such
as pathological pain [72]. NO signalling pathway has
also been shown to play a crucial role in anxiety and
depression [73,74]. The nitric oxide synthase (NOS)
and concentrations of NO metabolites are higher in
depressed patients [75,76]. The inhibition of NOS3 in
the dorsolateral periaqueductal grey may exert anxio-
lytic effects [77].

The KEGG database has been developed to under-
stand the conservation and variation of genes and
genomes at the level of cellular organisms [78]. In this
study, we listed 20 pathways related to CP, AD and
MD (details are shown in Tables S7-S9). Among these,
11 pathways were considered the vital mechanisms
involved in all of these three diseases. Neuronal apop-
tosis is a significant contributor to the development of
hyperalgesia and sensitization particularly in neuro-
pathic pain [79], and it is related to apoptosis-associ-
ated proteins such as caspases [80]. CP is associated
with chronic neuroinflammation, the local inflamma-
tion in the peripheral or central nervous system [81].
Persistent chronic inflammation also increases the
development of neurodegenerative diseases [82]. As
an essential mechanism leading to neurodegeneration,
apoptosis is also implicated [79] in the pathogenesis
of neuropsychiatric diseases, such as anxiety and
depression [83]. Advanced glycation end products
(AGEs) interact with the receptor for AGEs (RAGE), con-
tributing to an inflammatory and oxidative response
[84]. AGE-RAGE pro-inflammatory signalling pathway
can lead to disease pathogenesis since its activation,
and ultimately tissue damage [85]. RAGE signalling is
involved in the occurrence of depressive-like behav-
jours in rats [86]. The normalization of AGE/RAGE in
the PFC and hippocampus has been found to exert
antidepressant-like and anxiolytic effects [87]. IL-17 is
mainly produced by immune cells and has potent
proinflammatory properties [88]. It contributes to the
generation of mechanical hyperalgesia [89]. IL-7 may
play an important role in mediating anxiety in patients
with chronic inflammatory conditions [90]. The anxiety
scores correlated negatively with IL-7 [91]. IL-7 is also

important in the development of depressive disorders
[92,93]. TNF is a vital signalling molecule in the central
nervous system in physiological and pathophysio-
logical conditions [94]. TNF release triggers a complex
downstream cascade involving the release of other
cytokines and then contributes to the initiation of
neuropathic and inflammatory pain [95,96]. In line
with the inflammatory hypothesis of depression, sug-
gesting that immune hyperactivation and dysregulated
cytokine production are involved in depression, Zou
et al. found that changes in the levels of cytokines
(such as IL-1B, TNF-o and IL-8) were related to the
degree of depression [97,98]. Deletion of TNF receptor
2 could show the ability to increase anxiety-like
behaviour [99]. The pain-inhibitory effect of nicotine
was mostly studied in animals, and it is related to the
activation of nicotinic acetylcholine receptors.
However, this antinociceptive effect is consistent with
the chronic exposure tolerance [100]. Nicotine influen-
ces a large number of physiological processes, includ-
ing AD and MD [101,102]. For example, nicotine can
increase brain dopamine levels to display antidepres-
sant effect [103]; however, depression is also a risk fac-
tor for nicotine dependence [102]. C-type lectin
receptor is involved in the regulation of inflammation
[104]. Macrophage-inducible C-type lectin (Mincle),
one of the CLRs, is a pattern-recognition receptor
(PRR) allocated to the CLR family; PRRs are regarded
as molecules that induce pathological changes in CP
[105]. Mincle in the injured nerve has also been dem-
onstrated to induce neuropathic pain [106].
Administration of cocaine can relieve depression and
anxiety induced by CP, accompanied by a downregu-
lation of 5-HT1A receptor [107]. However, continuous
and abusive intake of cocaine may lead to AD and MD
[108,109]. CP and abnormalities in glucose metabolism
have a strong relationship, which means that CP may
accelerate the progression of insulin resistance. The
underlying mechanisms partly correlated with downre-
gulated expression of insulin receptors [110]. By
contrast, insulin resistance can conversely promote
nociceptive hypersensitivity in a hyperglycaemia-inde-
pendent way [111]. Insulin resistance in brain induces
mitochondrial and dopaminergic dysfunction, contri-
buting to anxiety and depressive-like behaviours [112].
In other words, a high rate of comorbidity exists
between insulin resistance and AD/MD [113,114].
Meanwhile, increased inflammation and cytokine pro-
duction have been found in the insulin resistance
states in some brain regions [115], which provides
additional evidence for the relationship between insu-
lin resistance and AD/MD. Chronic abdominal pain is a
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common symptom in IBD [116]. Related aetiology
involves peripheral inflammation, which can result in
the release of cytokines leading to visceral hypersensi-
tivity, and central mechanisms, which also influence
pain modulation in IBD [117,118]. Numerous psycho-
social factors, including AD and MD, are positively
associated with pain in IBD [119]. Moreover, there is a
significant link between AD/MD and IBD itself, because
proinflammatory mediators present in IBD may con-
tribute to AD and MD [120-122]. Adipocytes linked
with primary afferent neurons may participate in the
development of neuropathic pain [123]. By contrast,
pain may be important for the regulation of lipolysis
[124]. Adipocytes can continually and systemically
release proinflammatory factors [125], which suggest a
relationship with AD/MD. Secreted from adipocytes,
adiponectin and leptin have been demonstrated to
modulate anxiety and depressive behaviours [126,127].

There have been some reports about the effects of
Gui Zhi or Shao Yao on these targets. For example,
Gui Zhi has the anti-inflammatory effect of down-regu-
lating the expression of various genes related to
inflammatory responses in lipopolysaccharide (LPS)-
stimulated BV-2 microglial cells, including IL6, TNF and
COX-2 [128]. Paeoniflorin, extracted from the root of
Shao Yao, significantly decreased the expressions of p-
Akt (Ser 473) in rats with collagen-induced arthritis.
Paeoniflorin also could inhibited LPS-induced expres-
sion of IL6, TNF and COX-2 [129]. Total glucosides of
Shao Yao could inhibit the neuronal apoptotic death
by reduced CASP3 and Bax expression, and elevated
Bcl-2 [130]. However, the predicted crucial pathways
of the ingredients of the “Gui Zhi-Shao Yao” herb pair
are very sparse by reviewing the literature, which sup-
ply new insight into possible explored the underlying
mechanism of the potential anti-CP effects by “Gui
Zhi-Shao Yao” herb pair.

Our study has several limitations. First, during the
decoction process, various chemical components of
different herbs may interact, causing certain changes
in the composition. It is very likely that the chemical
compositions are differences between the herbal com-
pounds of Gui Zhi, Shao Yao and the “Gui Zhi-Shao
Yao” herb pair. Second, the further experimental valid-
ation is essential to reveal these targets and pathways
in anti-CP effect of the “Gui Zhi-Shao Yao” herb pair.
Third, our study was based on the currently available
scientific evidence. Some druggability of the com-
pounds of “Gui Zhi-Shao Yao” are not well elucidated
at present. We cannot completely exclude this pos-
sible information bias.
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Conclusions

In this study, using the network pharmacology, our
study has predicted the targets of the ingredients of
the “Gui Zhi-Shao Yao” herb pair and explored the
underlying mechanism of the potential anti-CP effects.
The extensive analysis results showed that “Gui
Zhi-Shao Yao” herb pair elicits its pharmacological
effects in CP by modulating the multiple pathways
and multiple targets.
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